
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 2 1, 993-1 005 (1 995) 

NUMERICAL ANALYSIS OF 2D VORTEX-INDUCED 
OSCILLATIONS OF A CIRCULAR CYLINDER 

R. WEI, A. SEKIIW AND M. SHIMURA 
Technical Research Institute of Maeda Corporation, Tokyo, Japan 

SUMMARY 

In this paper a finite element version of the direct Laplacian method is applied to flows around an oscillating body, 
using the arbitrary Langrangim-Eulerian (ALE) formulation for the partial domain around the body. This 
numerical calculation has been successfully conducted for vortex-induced, cross-flow oscillations of a circular 
cylinder under the same conditions as for Anagnostopoulos and Bearman’s experiment (.I Fluids Struct., 6, 39-50 
(1992)), in which the Reynolds number ranged between 90 and 150, a regime where the vortex street is fully 
laminar. The numerical calculation results have been compared with the experimental data in order to check the 
calculational accuracy. 
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1. INTRODUCTION 

The problems of fluid-structure interaction attracts much attention in civil and building engineering. 
The affect of a fluid (e.g. wind) on a structure is normally considered as a fluctuating or average wind 
pressure acting on the surface of the structure when undertaking a structural design. In recent years, 
with the development of construction technology, many large structures such as super-high-rise 
buildings, long-span bridges and large domes with light roofs have been built or are being planned. 
These large structures can no longer be treated as rigid bodies, because their natural frequencies are 
comparatively low. If their natural frequencies are close to vortex-shedding frequencies and the 
vibration-damping coefficient is sufficiently small, self-excited vibrations may be induced. Further- 
more, large amplitudes of vibration may influence the surrounding flow pattern and consequently lead 
to more serious non-linear interaction between the flow and the structure motion. Then structural 
damage may occur. Therefore it is necessary to study this phenomenon. 

The present paper is aimed at solving such a fluid-structure interaction problem computationally, 
where the structure is often idealized as a rigid body supported by elastic springs. The key point in 
solving such a problem is the treatment of the moving interface between the fluid and the rigid body. 
We have developed a finite element method for interaction problems of viscous incompressible fluid 
flows and motion of an elastically mounted rigid cylinder by using the ALE method. The present 
analysis method features (i) a semi-implicit scheme utilizing the finite element method, (ii) a direct 
Laplacian approximation for the pressure equation and (iii) an efficient application of the ALE method 
for the moving boundary. A numerical calculation has been carried out to simulate the vortex-induced 
vibrations of a circular cylinder under the same conditions as for Anagnostopoulos and Bearman’s’ 
experiment. 

In the branch of CFD employing finite elements, the first approaches to treating the moving 
boundary interface were taken in the 1970s. Belytschko and Kennedy2 applied calculations of the 
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vibration of pipes in nuclear reactors for the first time; Donea et aL3 also worked on the same 
problems. However, in those calculations only the Lagrangian method was applicable to describe the 
momentum equation, so there were limitations in solving problems involving large deformations of the 
moving boundary. In the 1980s Hughes et a14 Lin et al.5 and Ramaswany and Kawahara6 presented the 
arbitrary Lagrangian-Eulerian (ALE) finite element method. (In fact, the ALE method was first 
mentioned by Hirt et al.’ based on a formulation of the finite difference method.) In the early.1990~ 
Mittal and Tezduyar’ gave some explanations of the causes of ‘lock-in’ and ‘hysteresis’. 

This paper is structured as follows. In Section 2 the basic ALE concept and how to apply the ALE 
method to the Navier-Stokes (N-S) equation are briefly described. In Section 3 the computational 
procedure derived from the direct Laplacian method is presented. In Section 4 a numerical analysis of 
vortex-induced cylinder oscillations is conducted to compare with the reported experimental results. 
Section 5 contains some concluding remarks. 

2. ALE CONCEPT AND APPLICATION TO N-S EQUATION 

The governing equations for time-dependent incompressible viscous flow consist of the Navier-Stokes 
equation and the continuity equation, which are written as follows in non-dimensional form: 

aui _ -  - 0. 
hi 

Equation (1) represents momentum conservation and equation (2) is the statement of mass 
conservation. Here zii is the stress tensor, which can be defined as 

Equations (1H3) are valid only when the fluid is under the incompressibility constraint and the 
density is constant. Here ui is the velocity vector in the i-direction, t is the time, bi is the unit body force 
vector in the i-direction, p is the fluid density, P is the pressure, 6, is the Kronecker symbol and p is the 
coefficient of material viscosity. 

Equation (1) is only applicable for a fixed Eulerian co-ordinate x and cannot be utilized in the 
moving boundary problem. Here we can assume that there exists a moving co-ordinate system X which 
is deformed with the moving boundary under a certain rule. In such a co-ordinate system as shown in 
Figure 1, if we assume that a particle flows fiom point A to point B with a movement of Ax while the 
co-ordinate X moves from point A to point C with a movement of Ay in a very short time At, then 

AX - Ay = (U - V)At ,  (4) 

where U denotes the velocity of the particle and V denotes the velocity of the moving co-ordinate X. 
Observing the motion of point B from point C, the differentiation of a functionfix, t )  can be defined as 

Df = f ( x ,  t )  + Af(x, t )  = f ( x  + ( A X  - Ay), t + At).  ( 5 )  

Using a Taylor series expansion in time to second-order accuracy gives 
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Figure 1. Co-ordinate system for arbitrary Lagrangian-Eulerian description 

When At is near zero, by introducing equation (4) into (6), the following equation can be derived: 

From (7) we know that in the ALE description the value of U-V influences the convection term of 
the N-S equation. Since the stress tensor, body force vector and continuity equation have no relation 
with time differentiation, they do not change in the ALE description. In this case equation (7) is 
equivalent to the Euler co-ordinate description when V=O and to the Lagrangian co-ordinate 
description when V =  U. This is the reason why this method is called the ALE method. Finally, the 
basic flow field equations used with the ALE method can be written as 

aq 
P -+(u,-v.)-  = p b ; + - - ,  (2 ax, " j )  ax, 

and then how to apply the movement rule to the nodes is the key point.' 

3. COMPUTATIONAL PRINCIPLES 

The basic equations for time-dependent incompressible viscous flow consists of the Navier-Stokes 
equation and the continuity equation, which are written as follows in non-dimensional form: 

au 1 
at Re - + (U - V)(U f V) + V P  - -v*u = 0, 

v ,u=o .  (1 1) 

The kinetic equation for the structural component is the well-known expression 

MX + cx + Kx = f, (12) 

where x andfare the displacement of the structure and the fluid force respectively and M, C and K are 
the mass, damping and stiffness matrices respectively. Since it is very difficult and laborious to solve 
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these equations fully coupled, for simplicity and efficiency of calculation the fractional step method is 
applied to the interaction problem. In Section 3.1 we will discuss the fractional step method briefly. 

3.1. Fractional step method 

Applying the forward Euler scheme to the time derivative term, i.e. aUlat x (Urn+' - U"')/At, and 
approximating the pressure as P x P "'+I, equation (10) is rewritten in the following form, where P is a 
scalar and U is a vector; 

(13) 
~ m + l  - U m  1 + (Urn - Vrn)(Urn ' V) + VPrn+' - -V2Urn = 0. 

At  Re 

Taking the divergence of both sides of (13) and substituting the continuity condition V.Urn+' = 0, 
the pressure Poisson equation can be obtained as 

(14) 
1 -  

v Z p m + l  = -v . u, 
At  

where 

fi = Urn + At --'Urn - (Urn - Vrn)(Urn.  0 )  . (15) ( j e  1 
Here 6 is an intermediate variable and plays the role of predictor. The gradient Pm+' is the corrector 
for urn+'. 

3.2. Finite element method 

The finite element method is used for the spatial discretization of the equations. The weighted 
residual equations of (1 5) ,  (14) and (1 3) are formulated respectively as 

fi*(Urn - V m ) .  VUrndSZ 

P*VPrnf'dT - - P*V . fidQ, 
At  ' S  

12 

where 6*, U* and P* are the weighting functions for the intermediate variable, primitive velocity and 
pressure respectively. The Laplacian terms of both velocity and pressure are decomposed by the 
formula for integration by parts. The standard Galerkin method is employed for the discretization of 
the basic equations. The interpolation and weighting functions are defined as 

u = "I{ u),  
u* = "]{fr*}, 
u = "IIU}, 
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U* = [N]{U*), 

P = "IV'), 

P* = "] (P*] ,  (24) 

where N is the interpolation function. In this paper the bilinear function based on the four-node 
quadrilateral element is employed for all variables. The present fractional step method does not require 
any stabilizing technique. At the same time the constraint of the LBB condition is avoided by 
considering the pressure Dirichlet condition in the Poisson equation 

The finite element equations can be formulated as 

Me = MU" + At - ( C  - S)Um - A(Um)(Um - V"') (25) ( d e  

where 

M = ]  NTNdS2, 
n 

S = [  VNTVNdQ2, 
n 

C =  NTVNdr, Ir 
A =  NTN.VNdh,  

[n 

H = [  NTVNdS2. 
Q 

For the sake of calculational efficiency the lumped mass matrix is used instead of the consistent mass 
matrix in (25) and (27). 

3.3. Boundary condition for pressure and Shimura-Kawahara (S-K) scheme 

The treatment is described as follows. 
Equation (26) needs an appropriate Dirichlet boundary condition to be solved in algebraic terms. 

The boundary condition for pressure is derived from the following equations on r, where r = asZ 
and r=r l  u r2 u r3: 
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@ ; pb nodes on open boundary 

0 : P, nodes next  to open boundary 

; Pi nodes of t h e  o t h e r s  

Figure 2. Elements on outflow boundary domain \ .- 

Here the velocity on rl (inlet) is given, the velocity on r2 (wall) is zero and the velocity on r3 (outlet) 
is unknown. 

These equations are obtained by normal and tangential projections of (10) and (1 1) onto r. The co- 
ordinate system is shown in Figure 2. If the boundary condition for pressure is considered, the normal 
gradient term of pressure can be evaluated via (33), because the velocities Urn+' and Urn are given on 
rl and l-2. However, in general time-dependent problems neither the pressure gradient nor the pressure 
itself on the open boundary can be prescribed, because Urn+' on r3 is unknown. Therefore a new 
approximation method to calculate the pressure on r3 by using a similar procedure as for the inner 
domain of R is necessary and is proposed in the following manner. 

It is very important to focus on the boundary condition of Navier-Stokes problems, especially in 
outflow or flow-through problems. Many researchers who are experienced in the practical computation 
of outflow problems know the significance of the open boundary condition in the location of the 
computational boundary. 

Generally the boundary of the domain being analysed is called an open boundary and can be 
classified into inlet, wall and outflow boundaries. The inlet boundary rl is prescribed for the inflow 
velocity according to the analysis problem. The wall boundary r2 is a no-slip boundary and this 
condition is generally defined as U=O. However, the outflow boundary r3 cannot be defined so 
simply. If only flow velocity and pressure values are utilized as constant on r3 throughout the 
calculation, the calculational results may be affected seriously and divergence may occur. In analysis 
methods not using the pressure Poisson equation, the traction-free condition is usually used as the 
outflow natural boundary condition. However, in the fractional step method, if the Dinchlet boundary 
condition for pressure is not imposed when solving the pressure Poisson equation (26), this calculation 
will have no algebraic solution. Furthermore, such boundary conditions should be regarded as 
additional but cannot be contradictory to the boundary conditions of the whole fluid domain. 

Several years ago Shimura and Kawahara" proposed a generalized scheme for the treatment of the 
outflow boundary condition of the time-dependent N-S problem in the case of using the pressure 
Poisson equation. The traditional finite element solutions have a traction-free condition or an infinite 
condition on the outflow boundary. However, in a practical computation of the time-dependent 
problem it is impossible to prescribe the boundary condition on the computational boundary. It is 
necessary for the boundary to be treated similarly to the inner domain. Generally the best approach is 
to use the time-dependent boundary condition which is derived from the basic equations. 
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This idea is described and shown in Figure 2.  Considering the open boundary domain which 
consists of the elements adjacent to the computational boundary, the same algebraic formulation as 
(14) is used in order to solve the boundary values Pb on the computational boundary, where the 
velocity field is known. In this scheme the pressure Poisson equation is calculated in two steps. In the 
first step, equation (36), the pressure values P, assumed to be given on the inner-side nodes are utilised 
as the Dirichlet boundary condition (DBC) to solve Pb, because the pressure distribution on the inner- 
side nodes will be the best approximation for the computational boundary. In the second step, equation 
(37), the boundary pressure Pb is used for the DBC to solve the whole domain. In this way the pressure 
Pa on the inner side of the open boundary domain is automatically corrected during the second step 
when the pressure distribution on the whole domain is calculated. Only the initial values of pressure are 
needed for the pressure Poisson equation and the pressure distribution on the computational boundary 
is varied for each time step according to the velocity field. 

Remark. Equation (26) can be rewritten as 

in which the coefficient matrix S is reduced into S, and Si+a as follows during the calculation of the 
pressure Poisson equation: 

4. ANALYSIS OF VORTEX-INDUCED CYLINDER OSCILLATIONS 

4. I .  Calculation procedure 

Many authors have applied the ALE method in the whole fluid field. This means that the finite 
element meshes of the whole domain have to be remeshed every time step and the calculation of the 
finite element matrices has to be repeated every time step, so the computational efficiency is poor. 
Therefore Shimura and Zienkiewicz" proposed the idea of applying the ALE method in a partial 
domain around the rigid body. The fluid field far from the rigid body is given a Eulerian description 
and the meshes in this domain are fixed through all time steps. Thus the remeshing domain is shrunk 
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and the calculational efficiency is significantly improved. However, determining the appropriate ALE 
domain depends on the displacement response of the rigid body. An ALE domain of insufficient area 
may result in projection errors. It may take some time to define a proper domain after repeated trial and 
error. 

Figure 3 shows the analysis model. Defining a proper analysis domain before starting a numerical 
flow analysis can save on computing costs and make the computing perfonnance more efficient while 
keeping the numerical results accurate. In the analysis of a fluid around a rigid body the fluid force 
acting on the body is influenced by the length in front, at the side and at the rear of the body, Too 
narrow domains may produce blockage phenomena as in wind tunnel tests. In our experience at least 
six times the body's width in the upstream and at both sides and eight times in the downstream are 
necessary. 

The calculation procedure of the present method can be depicted as in Figure 4. Initial conditions 
and boundary values of the velocity field are given for each problem, but an impulsive start is usually 
imposed in the case of time-dependent problems. In the present calculation, four-node isoparametric 
bilinear elements were adopted for all variables. The next step is the forward reduction of the Laplacian 
matrix which is stored in skyline form. 

In the time step loop the fluid force acting on the structure is first calculated, then the displacement 
of the structure can be solved from the kinetic equation via the usual scheme. In this calculation t'he 
linear acceleration method was used for the one-degree-of-freedom ( Y )  problem. If the structure is not 
rigid, it is easy to solve the deformation as a multiple-degree-of-freedom problem. Figure 5 shows the 
schematic description of the displacement of the structure. After calculating the structural 
displacement, the Lagrangian velocity Y for each node in the ALE domain (points 4-6) can be 
obtained by linearization between the structure (points 7-9) and the Eulerian node (points 1-3), which 
is the interface of the Eulerian and Lagrangian domains. According to the new location of nodes, 
remeshing is implemented in the ALE domain. The intermediate variable can be calculated on the basis 
of the new mesh and the structural boundary condition U = K Therefore the convection term vanishes 
on the surface of the structure. The next calculation is that of pressure values on the outflow boundary 
using the Poisson equation. Finally, the pressure field of the whole domain is obtained by backward 
substitution in the Poisson equation for the whole domain and the new velocity field is calculated using 
the momentum equation. 

In the present scheme, because the pressure distribution on the computational boundary is 
automatically calculated, a Dirichlet boundary condition is necessary only for the velocity field. 

S t r u c t u r e  Open B o u n d i r r  
IS-K Scheme) \ 

A q D r o t c h  
F ior 
d 
uo 

E u l e r  Doiain 

Figure 3. Analysis model 
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Figure 4. Calculation procedure 

The time increment of the present method obeys the stability restriction 
Ax 

2v/ Ax + u ' 
At < 

1001 

where Ax and v are the mesh size and the kinetic viscosity respectively. 
In the analysis of the vortex excitation problem we have to estimate the drag and lift forces which 

induce the movement of the structure. In order to demonstrate the validity of the present method, a 
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Figure 5 .  Description of structural displacement 
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Figure 6.  Conditions for analysis 

vortex-induced oscillation analysis for a circular cylinder was implemented in the case of a resonance 
condition where the vortex separation period is equal to the natural oscillation period of the cylinder, 
which was measured in Anagnostopoulos and Bearman’s‘ experiment. 

The drag and lift force coefficients are obtained by the equations 

where A is the representative area, nx and ny are the normal vector components, po V:/2 is the dynamic 
pressure at the inlet andfx and& are the components of the force term in (12). 

4.2. Numerical results 

Anagnostopoulos and Bearman‘ conducted a series of experiments into the vortex-induced cross- 
flow oscillations of a circular cylinder mounted elastically in a water channel. In these experiments, 
where the wake behind the cylinder is filly laminar, they captured the ‘lock-in’ phenomenon over the 
Reynolds number range 106-126. 

We interpreted the experiments in terms of a finite element model employing the analytical 
conditions shown in Figure 6 and the mesh deformation pattern shown in Figure 7. To simplify this 
problem, the structure is idealized as a rigid body supported by elastic springs in the Y- direction. The 
region of deformable finite elements is restricted to the square region around the cylinder in order to 
reduce the computational load. 

The resonance of the cylinder vibration used for the calculation is set up according to the 
experiment. The parameters of the experimental conditions are given in Table I and Figure 6. 

Using these experimental results as the calculational conditions, we performed a series of 
computations on the vortex-excited vibrations of the cylinder at Re = 90, 100, 110, 120, 130 and 140. 
Figure 8 shows the time histories of the non-dimensional cylinder displacement, lift coefficient and 
drag coefficient at Re = 90, 1 10 and 130 (each time history represents 4 s of real time) after each flow 
has reached a periodic state. At Re = 90, which is below the ‘lock-in’ regime of the experiment, the 
oscillation amplitude is small and modulated or ‘beating’ because of the difference between the vortex- 
shedding frequency and the natural cylinder frequency. From this flow at Re = 90 we increased the 
upstream velocity to Re = 100 until we obtained the regular periodic flow of Figure 8(b). At Re = 100, 
since the vortex-shedding frequency coincides with the natural frequency of the cylinder-spring 
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n 

(b  

Figure 7. Finite element meshes: (a) undefomed mesh configuration; (b) deformed mesh configuration 

system, fn, the oscillation amplitude increases markedly. When we increased the upstream velocity to 
Re = 120, the vortex-shedding frequency remained at fn. Finally, when we increased the upstream 
velocity to Re = 130, which is above the ‘lock-in’ regime of the experiment, the oscillation amplitude 
gradually decreased and the lift coefficient was ‘beating’ as in Figure 8(c). These features in the 
present computations are quite similar to those observed in the experiments on ‘lock-in’. 

Figure 9 summarim the present computational results as well as the experimental data’ and the 
calculational results of N ~ m u r a ’ ~  for comparison. Using the present method, although the ‘lock-in’ 
phenomenon appears a little earlier than in the experiment, the frfn pattern agrees well with the 
experiment and the oscillation amplitudes are very close quantitatively to those of the experiment. In 
Nomura’~’~ calculation, although the ‘lock-in’ range is a little narrow, the vortex-shedding frequencies 
coincide well with the expermental results, but the oscillation amplitudes are approximately half those 

Table I. Parameters of reported experimental conditions’ 

st 0.1988 0.1789 0.1627 0.1491 0.1376 0.1278 

U(cm s-’) 5.646 6.274 6.901 7.529 8.156 8.783 
Re 90 100 110 120 130 140 
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of the experiment. In terms of the comparison of oscillation amplitudes the present method gives 
results closer to the experimental data. 

5. CONCLUDING REMARKS 

The problem of large-amplitude vortex-induced oscillations of a cylinder was solved stably and 
successfully by the present method, which employs the ALE formulation for the partial flow domain. 
The ‘lock-in’ phenomenon was captured quantitatively and agreed well with Anagnostopoulos and 
Bearman’s’ experiment. In actuality, high-Reynolds-number flow and turbulence models account for 
most of the phenomena in wind engineering. How to apply the present method to describe these 
phenomena is our future task. 
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